
exascaleproject.org

Introduction to MPI-I/O

ATPESC 2022

Rob Latham
Math and Computer Science Division

Argonne National Laboratory

August 5, 2022

2

materials: https://github.com/radix-io/hands-on

Plan of attack

ÅBottom-up tour of I/O interfaces

ïPOSIX routines called by MPI-IO implementations

ïParallel-NetCDF routines build on top of MPI-IO

ÅSimple toy programs

ïRefining example several times throughout session

ïYou can apply these lessons to your own code

ÅHeads up: going to do things the "hard way",
then show "easier way"

ÅDemonstrating some tools for understanding
whatôs going on

POSIX

MPI-IO

PNETCDF HDF5
D
A
R
S
H
A
N

https://github.com/radix-io/hands-on

3

materials: https://github.com/radix-io/hands-on

Hands on materials

ÅCode for this é

ïSimple array I/O

Åé and other sections available on our gitlab site:

ïGame of Life I/O

ïSparse Matrix I/O

ïDarshan

ïHDF5

ï IOR recipes

ïhttps://github.com/radix-io/hands-on

Å Work through examples when you can. Weôre going to do this ñcooking showò
styleé

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

4

materials: https://github.com/radix-io/hands-on

Operating on Arrays

ÅArrays show up in many scientific
applications

ïMatrix operations

ïParticle maps

ïRegions of space

ïTime series

ï Images

ÅProbably your real application more
complicated but an array or two (or more) is
in there somewhere, Iôd wager.

https://github.com/radix-io/hands-on

5

materials: https://github.com/radix-io/hands-on

Graphic from J. Tannahill, LLNL

Typical simulations divide
up the region being
simulated into chunks,
then group those chunks
into similar amounts of
work.

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

When speed of
writing is the
priority, blobs of
data are written
from each node
into individual
files that must
then be post-
processed for
analysis.

To prepare data
for analysis, a
code can write in
a canonical view
by processing
the data while it
is in memory,
resulting in a
better organized
dataset.

or

Decomposition

https://github.com/radix-io/hands-on

6

materials: https://github.com/radix-io/hands-on

Scientific I/O constraints

ÅDefensive I/O:

ïGuard against node failures or program errors with checkpointing

ïApplication saves its own state

ïWith a bit of extra effort, can be a portable, canonical representation

ï Ideally Independent of number of processes

ÅRestarting:

ïCanonical representation aids restarting with a different number of processes

ÅData analysis

ïWho will consume this data?

ÅMachine Learning

ïñwhy is my [random small read] workload so slow?ò

https://github.com/radix-io/hands-on

7

materials: https://github.com/radix-io/hands-on

Defining a Checkpoint

ÅNeed enough to restart

ïHeader information

ÅSize of problem (e.g. matrix dimensions)

ÅDescription of environment (e.g. input parameters)

ïProgram state

ÅShould represent the global (canonical) view of the data

ÅIdeally stored in a convenient container

ïSingle ñthingò (file, object, keyval store...)

ÅIf all processes checkpoint at once, naturally a parallel, collective operation

https://github.com/radix-io/hands-on

8

materials: https://github.com/radix-io/hands-on

HANDS-ON 1: simple data descriptions (no I/O yet)

ÅConsider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers

Å Probably want to allocate on heap, not stack

Å Later steps will be easier if you make it a single allocation

2. Define a data structure describing the experiment

Å E.g. C struct with row, column, iteration

Å Use whatever language you likeé

ï é but we can be most helpful if you use C (c.f. RobLôspython ñsolutionsò)

Å Source ñtheta - setup - env.sh ò to load necessary modules

Å Could run this first example on laptop if you want: shouldnôt require any libraries

https://github.com/radix-io/hands-on

9

materials: https://github.com/radix-io/hands-on

HANDS-ON 1 solutions

typedef struct {

int row;

int col;

int iter ;

} science;

int *array;

array = malloc(XDIM*YDIM* sizeof (*array));

C struct holding metadata

Do this: index into a single big allocation

Donôt do this: N allocations will be slower and harder to describe

/* not MPI - friendly: describing this memory region will require

* a more complicated data type description */

int **annoying;

annoying = malloc (YDIM* sizeof (*array));

for (int i =0; i <YDIM; i ++)

annoying[i] = malloc (XDIM* sizeof (*array));

é

Good: X*Y elements in contiguous allocation

é é

Less good: multiple memory regions

https://github.com/radix-io/hands-on

10

materials: https://github.com/radix-io/hands-on

POSIX I/O

ÅPOSIX is the IEEE Portable Operating System Interface for Computing

Environments

ÅñPOSIX defines a standard way for an application program to obtain basic

services from the operating systemò

ïMechanism almost all serial applications use to perform I/O

ÅPOSIX was created when a single computer owned its own file system

https://github.com/radix-io/hands-on

11

materials: https://github.com/radix-io/hands-on

Deficiencies in serial interfaces

ÅTypical (serial) I/O calls seen in applications

ÅNo notion of other processors

ÅPrimitive (if any) data description methods

ÅTuning limited to open flags

ÅNo mechanism for data portability

ïFortran not even portable between compilers

POSIX:

fd = open(òsome_file ó, O_WRONLY|O_CREAT,
S_IRUSR|S_IWUSR);

ret = write(fd , w_data , nbytes);
ret = lseek (fd , 0, SEEK_SET);
ret = read(fd , r_data , nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, FILE=ôsome_file õ, &
STATUS=òreplaceó, &
ACCESS=òdirectó, RECL=16);

WRITE(10, REC=2) 15324
CLOSE(10);

https://github.com/radix-io/hands-on

12

materials: https://github.com/radix-io/hands-on

HANDS-ON 2: simple I/O

ÅWe havenôt talked about MPI-IO or I/O libraries, but we can still checkpoint.

ïSerial I/O, not parallel

ÅImplement ñwrite_dataò

ïWill create file and fill in data

ïPrototype:

Åint write_data (char *filename)

ïUse system calls (open(), write(), close()) , not ñstdioò calls (fopen (), fwrite (),
fclose ()) : will map more closely to MPI-IO later

ïHow will you know it worked?

ïWe are going to repeatedly revise write_data () (and later read_data ()) with each
exercise

https://github.com/radix-io/hands-on

13

materials: https://github.com/radix-io/hands-on

RUNNING

ÅSubmit to the óATPESC2022ô queue (theta)(no special queue on ascent)

ÅIôve provided a ósubmit-theta.shô and 'submit-ascent.sh' shell script
ï qsub Ƶq ATPESC2022 submit - theta.sh <program> [filename]

ÅIf you donôt give [filename], then ótestfileô used.

ÅWhich file system to use?
ï Tried to make scripts do right thing by default

ï Please donôt use the NFS-mounted home directory

ï Given scripts should already point you to the right parallel directory

Å Theta: /grand/ATPESC2022/ usr /$USER

Å Make a directory for your data
ï Theta: mkdir Ƶp /grand/ATPESC2022/ usr /$USER/

Å Set sensible striping:
ï lfs setstripe Ƶstripe - count - 1 /grand/ATPESC2022/ usr /$USER/

https://github.com/radix-io/hands-on

14

materials: https://github.com/radix-io/hands-on

Solution fragments:

int write_data (char *filename)

{

science data = {

.row = YDIM,

.col = XDIM,

. iter = 1

};

int *array;

int fd ;

int ret=0;

array = buffer_create (0, XDIM, YDIM);

fd = open(filename, O_CREAT|O_WRONLY,

S_IRUSR|S_IWUSR);

ret = write(fd , &data, sizeof (data));

ret = write(fd , array, XDIM*YDIM* sizeof (int));

ret = close(fd);

return ret;

}

% od - td testfile
0000000 1 5 1 0
0000020 1 2 3 4
0000040

Reading a binary file: ñcatò wonôt work.
Could write a c program to read. Several
utilities available. I like óodô: (historically it
only did an ñoctal dumpò). The (t)ype
argument can select (d)ecimal

https://github.com/radix-io/hands-on

15

materials: https://github.com/radix-io/hands-on

HANDS-ON 3: send-to-master

ÅParallel program, but serial I/O

1. Write_data () should take an MPI
Communicator

2. Call MPI_Init() and MPI_Finalize()

3. Use MPI_Gather to collect all data onto rank 0:

ÅOnly rank 0 does I/O; writes header and all
array information

ÅWhatôs good about send-to-master? Whatôs
bad?

0 1 2 3 4

File

5

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

https://github.com/radix-io/hands-on

16

materials: https://github.com/radix-io/hands-on

Solution fragments: MPI_Gather: collect all data on rank 0

MPI_Comm_rank(comm, &rank);

MPI_Comm_size (comm, & nprocs);

/* every process creates its own buffer */

array = buffer_create (rank, XDIM, YDIM);

/* and then sends it to rank 0 */

int *buffer =

malloc(XDIM*YDIM* nprocs * sizeof (int));

MPI_CHECK(MPI_Gather (

/* sender (buffer,count,type) tuple */

array, XDIM*YDIM, MPI_INT,

/* receiver tuple */

buffer, XDIM*YDIM, MPI_INT,

/* who gathers and across which context */

0, comm));

https://github.com/radix-io/hands-on

17

materials: https://github.com/radix-io/hands-on

Solution fragments: writing from rank 0

if (rank == 0) {

/* looks like serial with more data */

é

/* writing (logically) global array, not

just our local piece of it */

data.row = YDIM* nprocs ;

data.col = XDIM;

data.iter = 1;

ret = write(fd , &data, sizeof (data));

ret = write(fd , buffer,

XDIM*YDIM* nprocs * sizeof (int));

ret = close(fd);

return ret;

}

https://github.com/radix-io/hands-on

18

materials: https://github.com/radix-io/hands-on

Other questions:

ÅLots of machines (your laptop; Theta) represent integers as 32 bit little
endian. What if you went back in time and ran this code on BlueGene

ïSummit and ascent are powerpc64le

ÅWe wrote row-wise. What if you wanted to write a column of data?

ÅWhat impact would a header have on data layout? Are there other options?

https://github.com/radix-io/hands-on

19

materials: https://github.com/radix-io/hands-on

HANDS-ON 4: using Darshan

1. Find the darshan log for the last exercise

2. View the raw counters with ñdarshan-parserò

3. Generate a report

ïYou might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2

ïHint: you canôt! ïwhy not?

ïéor can you?

ÅHint: https://www.alcf.anl.gov/support-center/theta/darshan

https://github.com/radix-io/hands-on
https://www.alcf.anl.gov/support-center/theta/darshan-theta

20

materials: https://github.com/radix-io/hands-on

Parallel I/O and MPI

ÅThe stdio checkpoint routine works but is not parallel
ïOne process is responsible for all I/O

ÅNo concurrency in I/O; single link to storage

ÅMemory pressure

ïWouldnôt want to use this approach for real

ÅHow can we get the full benefit of a parallel file system?
ïWe first look at how parallel I/O works in MPI

ïWe then implement a fully parallel checkpoint routine

ÅMPI is a good setting for parallel I/O
ïWriting is like sending and reading is like receiving

ïAny parallel I/O system will need:

Åcollective operations

Åuser-defined datatypes to describe both memory and file layout

Åcommunicators to separate application-level message passing from I/O-related message passing

Ånon-blocking operations

ï i.e., lots of MPI-like machinery

https://github.com/radix-io/hands-on

21

materials: https://github.com/radix-io/hands-on

Simple MPI-IO

ÅCollective open: all processes in communicator

ÅFile-side data layout with file views

ÅMemory-side data layout with MPI datatype passed to write
MPI_File_open (COMM, name, mode,

info, fh);
MPI_File_set_view (fh , disp , etype ,

filetype , datarep , info);
MPI_File_write_all (fh , buf , count,

datatype, status);

MPI_File_open (COMM, name, mode,
info, fh);

MPI_File_set_view (fh , disp , etype ,
filetype , datarep , info);

MPI_File_write_all (fh , buf , count,
datatype, status);

disp

https://github.com/radix-io/hands-on

22

materials: https://github.com/radix-io/hands-on

Collective I/O

ÅA critical optimization in parallel I/O

ÅAll processes (in the communicator) must call the collective
I/O function

ÅAllows communication of ñbig pictureò to file system

ïFramework for I/O transformations/optimizations at the MPI-IO layer

ïe.g., two-phase I/O

Small individual

requests
Large collective

access

https://github.com/radix-io/hands-on

23

materials: https://github.com/radix-io/hands-on

Collective MPI I/O Functions

ÅNot going to go through the MPI-IO API in excruciating detail

ïHappy to discuss in slack, chat, email

ÅMPI_File_write_at_all, etc.

ï_all indicates that all processes in the group specified by the communicator passed to
MPI_File_open will call this function

ï_at indicates that the position in the file is specified as part of the call; this provides thread-
safety and clearer code than using a separate ñseekò call

ÅEach process specifies only its own access information

ï the argument list is the same as for the non-collective functions

ïOK to participate with zero data

ÅAll processes must call a collective

ÅProcess providing zero data might participate behind the scenes anyway

https://github.com/radix-io/hands-on

24

materials: https://github.com/radix-io/hands-on

HANDS-ON 5: writing with MPI-IO

ÅLetôs take ñI/O from masterò example and make it parallel

ÅUse MPI_File_open instead of open

ÅOnly one process needs to write header
ï Independent MPI_File_write

ï Could combine, but header I/O small and checkpoint (typically) vastly larger

ÅEvery process sets a ñfile viewò
ï Need to skip over header ïfile view has an ñoffsetò field just for this case

ïThe ñfile viewò here is not complicated: we are operating on integers, not
bytes:

ÅMPI_File_set_view (fh , sizeof (header), MPI_INT, MPI_INT,
"native" , info));

ÅEach process writes one slice/row of array
ï MPI_File_write_at_all

ïOffset: ñrank*XDIM*YDIMò ïno ósizeofô: specified ints in file view

ïñ(bufer, count, datatype)ò tuple: (values, XDIM*YDIM, MPI_INT)

xdim

y
d
im

ra
n
k
 0

 1
 2

 3
 4

https://github.com/radix-io/hands-on

25

materials: https://github.com/radix-io/hands-on

Solution fragments for Hands-On 5

if (rank == 0) {

MPI_CHECK(MPI_File_write (fh ,

&header, sizeof (header), MPI_BYTE,

MPI_STATUS_IGNORE));

}

MPI_File_write_at_all (fh , rank*XDIM*YDIM,

values, XDIM*YDIM, MPI_INT,

MPI_STATUS_IGNORE));

Header I/O from rank 0:

Collective I/O from all ranks

https://github.com/radix-io/hands-on

26

materials: https://github.com/radix-io/hands-on

Hands-on 5 continued: Darshan

ÅA lot like #4: letôs use Darshan

ïFind Darshanlog file, but donôt generate report right away

ÅWhat do you think the report will say?

ÅOK, now generate the report. Were you surprised?

ïCounts of POSIX calls vs MPI-IO calls

ïSizes of POSIX calls vs sizes of MPI-IO calls

https://github.com/radix-io/hands-on

27

materials: https://github.com/radix-io/hands-on

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used to
manage concurrent access:

ÅFiles are broken up into lock units
ï Unit boundaries are dictated by the storage system, regardless of access pattern

ÅClients obtain locks on units that they will access before I/O occurs

ÅEnables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

ÅLocks are reclaimed from clients when others desire access

If an access touches any data in a

lock unit, the lock for that region

must be obtained before access

occurs.

https://github.com/radix-io/hands-on

28

materials: https://github.com/radix-io/hands-on

Implications of Locking in Concurrent Access

https://github.com/radix-io/hands-on

29

materials: https://github.com/radix-io/hands-on

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

ÁGoals of transformations:
ï Reduce number of operations to PFS

(avoiding latency)

ï Avoid lock contention

(increasing level of concurrency)

ï Hide number of clients

(more on this later)

ÁWith ñtransparentò transformations,

data ends up in the same locations

in the file as it would have been

normally
ï i.e., the file system is still aware of the

actual data organization

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://github.com/radix-io/hands-on

30

materials: https://github.com/radix-io/hands-on

I/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

ÁWe will tour through a few examples

of data transformations in the

following slides

ÁThe important thing to remember is

that software already exists to do

these things for you in HDF5,

PnetCDF, ADIOS, and MPI-IO

ÁIf you find yourself replicating these

optimizations by hand, look around

to see if you can find an off-the-shelf

solution

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://github.com/radix-io/hands-on

31

materials: https://github.com/radix-io/hands-on

Reducing Number of Operations

Because most operations go over multiple networks, I/O to a PFS incurs more
latency than with a local FS. Data sieving is a technique to address I/O latency by
combining operations:

ÅWhen reading, application process reads a large region holding all needed data and
pulls out what is needed

ÅWhen writing, three steps required (below)

ÅSomewhat counter-intuitive: do extra I/O to avoid contention

Step 1 : Data in region to be modified

are read into intermediate buffer (1

read).

Step 2 : Elements to be written to file

are replaced in intermediate buffer.

Step 3 : Entire region is written back to

storage with a single write operation.

https://github.com/radix-io/hands-on

32

materials: https://github.com/radix-io/hands-on

Data Sieving in Practice

Naiive Data Sieving

MPI-IO writes 192 192

MPI-IO Reads 0 0

Posix Writes 192000 192000

Posix Reads 0 192015

MPI-IO bytes written 1920000000 1920000000

MPI-IO bytes read 0 0

Posix bytes read 0 100039006128

Posix bytes written 1920000000 100564552704

Not always a win, particularly for writing:
Å Enabling data sieving actually made writes slower: why?
Å Locking to prevent false sharing (not needed for reads)
Å Multiple processes per node writing simultaneously
Å Internal ROMIO buffer too small, resulting in write amplification

https://github.com/radix-io/hands-on

33

materials: https://github.com/radix-io/hands-on

Avoiding Lock Contention

We can reorder data among processes to avoid lock contention. Two-
phase I/O splits I/O into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

ÅData exchanged between processes to match file layout

Å0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes based

on organization of data in file.

Phase 2: Data are written to file (storage servers) with

large writes, no contention.

https://github.com/radix-io/hands-on

34

materials: https://github.com/radix-io/hands-on

Two-Phase I/O Algorithms
(or, You donôt want to do this yourselfé)

For more information, see W.K. Liao and A. Choudhary, òDynamically

Adapting File Domain Partitioning Methods for Collective

I/O Based on Underlying Parallel File System Locking Protocols,ó SC2008,

November, 2008.

Todayôs systems also
choose aggregators
that are ñbestò for
storage

https://github.com/radix-io/hands-on

35

materials: https://github.com/radix-io/hands-on

Two-phase I/O in Practice

Naiive Data Sieving Two-phase

MPI-IO writes 192 192 192

MPI-IO Reads 0 0 0

Posix Writes 192000 192000 1832

Posix Reads 0 192015 0

MPI-IO bytes written 1920000000 1920000000 1920000000

MPI-IO bytes read 0 0 0

Posix bytes read 0 100039006128 0

Posix bytes written 1920000000 100564552704 1920000000

Å Consistent performance independent of access pattern
Å Initial performance might underwhelm you
Å Lots of tuning knobs: getting lock contention right is subtle
ÅñThrow Machine Learning at itò still a good ideaé
Åé But folks like me arenôt losing jobs anytime soon.

Å After tuning (two hints), performs so well I had to re-scale the y axis

https://github.com/radix-io/hands-on

36

materials: https://github.com/radix-io/hands-on

HANDS-ON 6: reading with MPI-IO

ÅSlightly different: all processes read one column
ïFor simplicity, same row

ÅFile view will be more complicated, use MPI ñSubarrayò
datatype

ÅIn C, array access is described in ñrow-majorò
ïarray_size [0] = 5; array_size [1] = 4;

ÅFile view uses derived ósubarrayô, not built-in MPI_INT

ÅLocation in file given with subarray type; no offset in
MPI_File_read_all
ïStill provide a ñbuffer, count, datatypeò tuple for memory layout

4

N
p
ro

c
s

https://github.com/radix-io/hands-on

37

materials: https://github.com/radix-io/hands-on

Solution fragments

/* In C - order the arrays are row - major:

*

* | ----- |

* | ----- |

* | ----- |

*

* The 'sizes' of the above array would be 3,5

* The last column would be a " subsize " of 3,1

* And a "start" of 0,5 */

sizes[0] = nprocs ; sizes[1] = XDIM;

sub[0] = nprocs ; sub[1] = 1;

starts[0] = 0; starts[1] = XDIM/2;

MPI_Type_create_subarray (NDIMS,

sizes, sub, starts,

MPI_ORDER_C, MPI_INT, &subarray);

MPI_Type_commit (&subarray);

MPI_CHECK(MPI_File_set_view (fh , sizeof (header),

MPI_INT, subarray, "native" , info));

MPI_Type_free (&subarray);

MPI_CHECK(MPI_File_read_all (fh ,

read_buf , nprocs , MPI_INT, MPI_STATUS_IGNORE);

Type creation File view and read

https://github.com/radix-io/hands-on

38

materials: https://github.com/radix-io/hands-on

Hands on 6 continued: Darshan

ÅHow does this workload differ from the write?

ÅChange the óread_allô to an independent óreadô

ïWhat do you think the Darshan output will say? Find out.

https://github.com/radix-io/hands-on

39

materials: https://github.com/radix-io/hands-on

GPFS Access three ways

ÅPOSIX shared vs MPI-IO collective

ï Locking overhead for unaligned writes hits POSIX hard

ÅDefault MPI-IO parameters not ideal

ï Reported to IBM; simple tuning brings MPI-IO back to parity

ïñVendor Defaultsò might give you bad first impression

ÅFile per process (fpp) extremely seductive, but entirely untenable on current generation.

https://github.com/radix-io/hands-on

40

materials: https://github.com/radix-io/hands-on

Performance portability in I/O:

ÅLet's look more closely at file-system
specific optmizations

ÅSimple ior benchmark on theta vs
ascent (baby summit)

ï1 000 000 bytes per process, 48
processes

ïCollective I/O forced on ascent

ÅDarshan confirms identical MPI-IO
workload

ÅDifferent tranformations for different
file systems

ïOST-oriented vs file block

Darshan Counter Theta

(Lustre)

Ascent

(GPFS)

MPIIO_ACCESS1_ACCESS 1 000 000 1 000 000

POSIX_WRITES 46 3

POSIX_BYTES_WRITTEN 48000000 48000000

POSIX_SIZE_WRITE_100K_1M 46 0

POSIX_SIZE_WRITE_10M_100M 0 3

POSIX_FILE_ALIGNMENT 1048576 -1(*)

POSIX_SLOWEST_RANK_BYTES 2097152 96000000

https://github.com/radix-io/hands-on

41

materials: https://github.com/radix-io/hands-on

MPI-IO Takeaway

ÅSometimes it makes sense to build a custom library that uses MPI-IO (or maybe
even MPI + POSIX) to write a custom format
ïe.g., a data format for your domain already exists, need parallel API

ÅWeôve only touched on the API here
ïThere is support for data that is noncontiguous in file and memory

ïThere are independent calls that allow processes to operate without coordination

ÅIn general we suggest using data model libraries
ïThey do more for you

ïPerformance can be competitive

https://github.com/radix-io/hands-on

42

materials: https://github.com/radix-io/hands-on

Additional Resources

ÅOn Cray systems, ñman intro_mpiò for 3,000 lines of
tuning parameters, debug configuration

ÅUsing Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

ïChapter on MPI I/O routines covers entire API as well as
consistency semantics

ÅMpi4py: Python bindings to MPI

ïhttps://mpi4py.readthedocs.io/en/stable/index.html

https://github.com/radix-io/hands-on

